National Institute of Plant Genome Research
 
    Dr. Ananda K. Sarkar
    Staff Scientist III
    Phone: 91-11-26735220
    Fax: 91-11-26741658
    Email: aksarkar@nipgr.ac.in
 Research Area
Plant Stem Cells and Architecture: Genetic, Epigenetic and Small RNA Mediated Regulation.
 Academic Background
Staff Scientist & Ramalingaswami Fellow (2009 - 2014): NIPGR
Ramalingaswami Fellow (2009): ICGEB (International Centre for Genetic Engineering and Biotechnology), New Delhi.
Post Doc. Fellow (2006-2009): Cold Spring Harbor Laboratory (USA).
Ph. D. (2001-2006): Albert-Ludwigs-Universitaet Freiburg (Germany).
Res. Associate (2001): NRCPB (National Research Centre on Plant Biotechnology), IARI, New Delhi.
M. Tech. (1998-2000): Indian Institute of Technology - Kharagpur.
M. Sc. (1996-1998): Visva Bharati University (Shantiniketan).
 Awards, Honors and Fellowships:
Ramalingaswami Re-Entry Fellowship (DBT, 2009- 2014).
Prof. Archana Sharma Memorial Award (ISCA, 2010-2011).
"Suma Cum Laude" (best grade award for Ph.D., University of Freiburg, Germany).
Member of New York Academy of Science (2007-08) & AAAS, USA (2008-10).
Postdoctoral fellowship (2006- 2009; at Cold Spring Harbor Lab, USA).
Doctoral fellowship (2001- 2006) from German/European Research Foundations (DFG/SFB/REGIA).
DBT fellowship (1998-1999) for M.Tech. (through GATE; at IIT- Kharagpur).
 Research Interests
Genetic and epigenetic regulations of plant stem cells and architectures (root & shoot)
In higher plants, the continuous post-embryonic growth and lateral organ formation or branching is ultimately controlled by the root and shoot apical meristems through the activity of their respective "STEM CELL populations". Precise spatio-temporal regulation between diverse regulatory gene networks and their dynamic balance is quintessential for normal plant development. This balance is achieved by many layers of regulation at transcriptional, post-transcriptional and translational level. Epigenetic modifications play important role in gene transcription through DNA methylation and histone modifications. We are interested to understand the role of novel genes and epigenetic factors in regulation of plant stem cells, meristems, and patterning of root (and shoot) architecture. For this, we largely use molecular genetics, functional genomics and epigenetic techniques.
Role of small RNAs in plant stem cell regulation and root architecture
Besides protein coding genes, small non-coding RNAs (e.g. miRNA and siRNA) have recently been implicated in plant development and stress responses. We are exploring the role of miRNAs and other small RNAs in root meristem and architecture. We use NGS and microarray analysis to identify novel and relevant miRNAs, their targets. We further study their developmental role in plant stem cells or meristems, and root architecture through molecular genetic approaches.
Regulation of root architecture in crops (rice/maize) ‐ application and evolution
The adaptability of higher plants to the changing environmental conditions as well as their productivity largely depends on their ability to modulate the patterning of root (and shoot). Therefore, we are exploring the functional conservation of regulation of root development between monocot crops and dicot model Arabidopsis. We are also studying the aforesaid regulations in rice/maize with the goal to improve root architecture and make them environmentally/economically more sustainable.
 Positions Available
Roots and shoots are growing here; we welcome strong and efficient signaling candidates to contribute.
 Group Members
Dr. Alka Singh Research Associate
Dr. Ashutosh Kumar Research Associate
Ms. Archita SinghPh.D Student
Ms. Sharmila SinghPh.D Student
Mr. Vibhav Gautam Ph.D Student
Mr. Sandeep Yadav Ph.D Student
Mr. Pramod Kumar Ph.D student
 Scientific Publications
Selected Research Articles Journal Impact Factor Citation till 2014
Rai V, Sanagala R, Sinilal B, Yadav S, Sarkar AK, Dantu PK, Jain A. Iron Availability Affects Phosphate Deficiency-Mediated Responses, and Evidences of Cross Talk with Auxin and Zinc in Arabidopsis. Plant Cell Physiol. 2015 Jun;56(6):1107-23. doi: 10.1093/pcp/pcv035.

*It uncovers the cross-talk between neutrients and hormone (auxin) signalling in root development.

5
Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development. 2004 Feb;131(3):657-68.

*This article describes (FIRST time) novel WOX (WUSCHEL-RELATED HOMEOBOX) gene family, their expression dynamics, and role in embryonic patterning events. WUS, the founder WOX, is the master regulator of SHOOT STEM CELLs.

6.3 390
(~36 / yr)
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature. 2007 Apr 12;446(7137):811-4.

* QC specific transcription factor WOX5 is required for maintenance of QC and root stem cells. It provides first molecular evidence for role of conserved role of regulators in shoot and root stem cell maintenance.

36.3 372
(~47 /yr)
Brooks L, Strable J, Elshire R, Zhang X, Ohtsu K, Sarkar AK, Hargreaves S., Eudy D., Pawlowska T, Nettleton D, Timmermans MCP, Schnable PS, Scanlon MJ. Microdissection of Shoot Meristem Functional Domains in Maize. PLoS Genet. 2009 May;5(5):e1000476.

*Using Laser Capture Microdissection (LCM)-Microarray approach, it describes maize shoot meristem domain or organ specific gene expression signature and indicates function.

8.7 42
Douglas RD, Wiley D, Sarkar AK, Springer N, Timmermans MCP and Scanlon MJ. ragged seedling2 Encodes an ARGONAUTE7-Like Protein Required for Mediolateral Expansion, but Not Dorsiventrality, of Maize Leaves. Plant Cell. 2010 May;22(5):1441-51.

*It demonstrate role of small RNA (tasi-RNA) in maize leaf development.

10.7 31
Singh A, Singh A, Panigrahi KC, Reski R and Sarkar AK. Balanced activity of microRNA166/165 and its target transcripts from the class III homeodomain leucine-zipper family regulates root growth in Arabidopsis thaliana. Plant Cell Rep. 2014 Jun;33(6):945-53.

3.0 2
 Other Publications
Gautam V, Sarkar AK. Laser Assisted Microdissection, an Efficient Technique to Understand Tissue Specific Gene Expression Patterns and Functional Genomics in Plants. Mol Biotechnol. 2014 Nov 18. doi: 10.1007/s12033-014-9824-3.
Kaur C, Mustafiz A, Sarkar AK, Ariyadasa TU, Singla-Pareek SL, Sopory SK. Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiol Plant. 2014 Sep;152(1):1-16. doi: 10.1111/ppl.12147.
Barik S, Sarkardas S, Singh A, Gautam V, Kumar P, Majee M, Sarkar AK. Phylogenetic analysis reveals conservation and diversification of miR166 genes among diverse plant species. Genomics. 2014 Jan;103(1):114-21. doi:10.1016/j.ygeno.2013.11.004.
Singh S, Singh A, Roy S and Sarkar AK. SWP1 negatively regulates lateral root initiation and elongation in Arabidopsis. Plant Signal Behav. 2012 Dec;7(12):1522-5. doi: 10.4161/psb.22099.
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature. 2007 Apr 12;446(7137):811-4.
Deyhle F, Sarkar AK, Tucker EJ, Laux T. WUSCHEL regulates cell differentiation during anther development. Dev Biol. 2007 Feb 1;302(1):154-9.
Nogueira FT, Sarkar AK, Chitwood DH, Timmermans MC. Organ Polarity in plants is specified through the opposing activity of two distinct small regulatory RNAs. Cold Spring Harb Symp Quant Biol. 2006;71:157-6.
Pathre UV, Sarkar AK and Nath P. Modulation of Sucrose-Phosphate-Synthase Activity by Glucose-6-phosphate and Inorganic Phosphate during Post harvest Ripening in Banana. J. Plant Biol., 2001; Dec; vol. 28 (3), pp 301-305.
 Book Chapter
Sarkar AK, Karthikeyan M, Gautam V and Barik S. Improving the Plant Root System Architecture to Combat Abiotic Stresses Incurred by Global Climate Changes. CLIMATE CHANGE AND ABIOTIC STRESS TOLERANCE. Wiley Wiley-VCH Verlag GmbH & Co. Weinheim, Germany, 2014.